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Field Inside a Random Distribution of Parallel Dipoles
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We determine the probability distribution for the field inside a random distribution of electric or
magnetic dipoles. Although the average contribution from any spherical shell around the probe position
vanishes, at the center of a spherical distribution of parallel dipoles, the Levy stable distribution of the
field is symmetric around a nonvanishing field amplitude. Omission of contributions from a small
volume around the probe leads to a field distribution with a vanishing mean, which, in the limit of
vanishing excluded volume, converges to the shifted distribution.
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FIG. 1. The probability distribution for g � Fz=F0, the
scaled z component of the field at the center of a spherical
distribution of dipoles aligned along the z axis. The symbols
show the result of a simulation with 106 realizations of the
system with 50:000 individual dipoles (the uncertainty is
represented by the line thickness). The solid curve is the exact
Lorentzian solution for the probability distribution.
The z component of the field Fz at the origin due to an
electric or magnetic dipole located at r is given by the
expression

Fz � C
1

r3
��ẑ � n̂� � 3�r̂ � ẑ��r̂ � n̂��; (1)

where C � d=4�"0 for an electric dipole d � dn̂ and
C � 
0m=4� for a magnetic dipole m � mn̂. ẑ and r̂
are unit vectors along the z axis and r, respectively. The
field at a location within a random uniform distribution of
many dipoles is a superposition of terms like the one in
Eq. (1). The field component from a dipole parallel to the z
axis located at a distance r and at a direction � with
respect to the z axis is C�1� 3cos2��=r3, and one sees
that the average of this expression over directions in space
vanishes for all distances r. It is hence surprising that the
field distribution in Fig. 1, obtained by numerical simu-
lation, is symmetrical around a nonvanishing value of the
field. We shall prove analytically that the distribution is a
shifted Lorentzian, shown as the solid line in the figure,
and that this is the mathematical limit of distribution
functions which all have vanishing mean values but larger
and larger variances.

The fields from electric and magnetic dipoles give rise
to the most important interactions of neutral matter, and
they play significant roles in atomic, molecular, and
many-body physics. In the conclusion, we shall list topics
in current quantum gas and quantum information re-
search where the present analysis may have important
consequences.

A typical distance between dipoles with a given density

 is r0 � �3=4�
�1=3, and a corresponding typical field
strength is F0 � Cr�3

0 . For notational convenience, we
will rewrite Eq. (1) in terms of these typical values as

g �
Fz

F0
�

�
r
r0

�
�3
d�r̂; n̂�; (2)

where d�r̂; n̂� is the geometrical factor of Eq. (1).
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To derive the distribution function PN�g� for the field
component within a randomly distributed collection of N
dipoles, we shall first derive the distribution P1;N�g� �
P�gjr < N1=3r0� for the contribution from a single dipole
within a sphere of radius N1=3r0. The combined field due
to N dipoles within the same sphere is distributed accord-
ing to the N-th order convolution product

PN�g� �
Z

�

 XN
i�1

gi � g

!YN
j�1

P1;N�gj�dgj: (3)

The probability distribution P1;N is calculated as

P1;N�g� �
�Z N1=3r0

0
�
	
g�

�
r
r0

�
�3
d�r̂; n̂�



3r2dr

Nr30

�
; (4)

where we explicitly integrate over the radial distribution
of dipoles, and where h�i denotes the expectation value
with respect to the direction towards the dipole. The
expression readily incorporates also an average over pos-
sibly varying directions n̂ of the individual dipoles to be
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only briefly considered below. By a simple substitution,
we rewrite Eq. (4) as

P1;N�g� �
1

Ng2
D�Ng�; (5)

where D�g� is a geometrical factor which depends only on
the distribution of d:

D�g� �
�
jd�r̂; n̂�j

Z 1

0
�
�
u�

d�r̂; n̂�
g

�
du
�
: (6)

We observe the simple scaling of the probability distri-
bution for the field of a single dipole in a large volume
holding on average N dipoles: P1;N�g� � NP1;1�Ng�.

For dipoles parallel to the z axis, d�r̂; n̂� attains the
value

d�p���� � 1� 3cos2�; (7)

from which we find by integration over solid angles that

D�p��g� �
1

3
���
3

p



2� �2� g�

������������
1� g

p
if � 2< g< 1;

2 otherwise.

(8)

The fact that D�p��g� assumes a constant value of D�p�
1 �

2=3
���
3

p
� 0:3849 for jgj> 2 follows from (6) because jdj

is bounded by 2 and it provides P1;N with algebraic tails
proportional to g�2. This is illustrated in Fig. 2, where
P�p�
1;1 is compared to the distribution corresponding to a

step approximation of D�p� with the same limiting value:

D��g� �


D1 for jgj> 2D1

0 otherwise,
(9)

where the position of the edge is determined by the
normalization of P1;1�g�.

Because of the g�2 algebraic tails, the distribution P1;1

has a divergent variance and an ill-defined mean value.
This type of problem is addressed by generalized (Levy)
statistics, see, e.g., [1], and the form of the bulk distribu-
tion P1 � limN!1PN can be calculated by the general-
ized central limit theorem, see, e.g., chapter 17 of [2]. We
will, however, calculate P1 directly as the limit of PN to
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FIG. 2. The probability distribution P�p�
1;1�g� � g�2D�p��g� for

the field contribution from a single dipole parallel to the z axis.
The dotted curve is based on the step approximation D����g�,
with the same asymptotic values as D�p��g�.
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establish a formalism where the effect of an excluded
volume can also be obtained.

The simple scaling relation between P1;N�g� and P1;1�g�
allows us to express PN in terms of P1;1 by rewriting the
convolution Eq. (3) in Fourier space as

PN�g� �
Z

eikg
	
~P1;1

�
k
N

�

N dk
2�

; (10)

where ~� denotes the Fourier transform: ~f�k� �R
e�ikgf�g�dg. Equation (10) implies that to determine

PN in the limit of N ! 1, we must know the dependence
of ~P1;1�k� for small k. We first rewrite ~P1;1�k� as

~P1;1�k� �
Z

e�ikgg�2D����g�dg�
Z

e�ikgg�2�D�g�

�D����g��dg; (11)

where the first term is conveniently rewritten as

1� 2jkjD1

�
�
2
�
Z 2jkjD1

0

1� cos�t�

t2
dt
�
: (12)

In a small k expansion of the second integral of (11), the
0th order term vanishes since g�2D�g� and g�2D����g� are
both normalized. D and D��� are equal for all jgj> 2 and
since D��� is even, the 1st order term yields �ikgc with gc
defined as

gc �
Z g0

�g0
gP1;1�g�dg; (13)

for any g0 > 2. Collecting the two parts, we find that
~P1;1�k� � 1� �D1jkj � ikgc �O�k2�. Insertion of the
expression for D�p��g� leads to the value

g�p�c �
2

9

�
3�

���
3

p
log

���
3

p
� 1���

3
p

� 1

�
� 0:1598: (14)

To calculate the limit of PN for N ! 1, we rewrite (10)
as log� ~PN�k�� � N log ~P1;1�k=N�. Since ~P1;1�0� � 1 and
log�1� u� � u�O�u2�, the leading terms of the series
expansion of � ~P1;1�k� � 1� will dominate in the limit of
N ! 1, so that

log� ~P1�k�� � ��D1jkj � igck; (15)

from which the limiting distribution follows directly:

P1�g� �
1

�
�

�2 � �g� gc�
2 : (16)

This Lorentzian with a half width of � � �D1 and a
displacement of gc is in excellent agreement with our
numerical simulations shown in Fig. 1. The half width
�D�p�

1 F0 � 5:065C
 and central value g�p�c F0 �
0:6692C
 of the field distribution P�Fz� are both propor-
tional to the dipole density 
, and their ratio is indepen-
dent of 
.
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FIG. 3. Distribution of g for the case of dipoles parallel to
the z axis when an excluded volume of size  =
 is introduced.
Solid lines show the distribution P1� ; g� given by (18), for
 � 0, 0.4, 1, and 2 in order of increasing maximum densities.
Data markers are the result of numerical simulations. The
distributions have vanishing mean for all values of  > 0, yet
they approach the shifted Lorentzian, corresponding to  � 0.
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The shift of the most probable value with respect to
zero is surprising when one considers the vanishing mean
contribution from any spherical shell around the origin,
but it is less surprising when one observes the probability
distribution for the single dipole contribution, shown in
Fig. 2. This distribution is indeed suggestive of a shift, but
its mean is ill-defined, and (13) provides the proper
procedure to obtain gc from P1;1�g�.

For completeness we note that, in the case of arbitrarily
oriented dipoles, the factor d�r̂; n̂� is given by

d�r� � sin�1 sin�2 sin�� 2 cos�1 cos�2; (17)

where �1 is the direction of r̂, �2 is the angle between r̂
and n̂, and � represents the rotations of n̂ around r̂.
Simulations with small angle fluctuations of the dipoles
show no lowest order deviation from the parallel dipole
result. In the case of fully random directions of the di-
poles, integration over angles with the appropriate proba-
bility measure sin��1� sin��2�d�1d�2d�=8� yields an
even function D�r��g� with the asymptotic limit D�r�

1 �
1
4 �

��
3

p

24 sinh
�1�

���
3

p
� � 0:3450, implying a Lorentzian dis-

tribution with a half width � � �D�r�
1 ’ 1:083 centered at

zero field. This is in agreement with work by Stoneham
[3], who considered a variety of line broadening mecha-
nisms in solids, and identified a Lorentzian line as the
result of interaction of a single molecule with dislocation
dipoles. More recently [4], Lorentzian line shapes were
measured for molecules embedded in low temperature
glass with a low-density distribution of dynamical de-
fects. These results were interpreted in terms of Levy
stable distributions.

If the algebraic tails of P1;1 are truncated by some
mechanism, the distributions have finite variance, and
our naive estimates of mean values will be valid due to
the central limit theorem. To investigate whether such a
truncation entirely removes the more spectacular effect
identified above, we shall compute the field distribution in
the case where we will not allow any dipoles inside an
excluded volume in the form of a sphere of volume  =

centered at the origin. Note that  is the average number of
dipoles that would have been found in the excluded
volume. The symbols in Fig. 3 show the results of simu-
lations performed with dipoles put uniformly at random
around the origin but outside such excluded volumes, and
as we reduce the excluded volume, we observe that the
probability distributions converge towards the shifted
Lorentzian. The generalized central limit theorem which
applies for  � 0 and  ! 1 deals with the convergence
of the distribution function for a sum of more and more
random variables which all have the same individual
distribution after a suitable rescaling. Such rescaling is
not possible for intermediate values of  , which thus
require a direct calculation of P1� ; g�.

We consider the field contribution from a single dipole
placed at random in a spherical shell with outer radius
143903-3
�N �  �1=3r0 and inner radius  1=3r0. Parametrizing the
radius by x � �r=r0�3, the mean number of atoms popu-
lating the sphere with radius r, we have by Bayes rule and
the additivity of probabilities of disjoint events that P� <
x < N �  �P�gj < x < N �  � � P�x < N �  �P�gjx <
N �  � � P�x <  �P�gjx <  �, where the first factors are
simply the probabilities that a single particle is found in
the specified regions of space, and, e.g., P�x < �N �
 ��=P�x <  � � �N �  �= . Taking the Fourier transform
with respect to g and noting that ~P�kjx < xi� �
~P1;1�k=xi�, we obtain the following relation between the
Fourier transformed probabilities

N ~P�kj < x < N �  � � �N �  � ~P1;1

�
k

N �  

�
�  ~P1;1

�
k
 

�
:

We are interested in the probability PN� ; g� that the
contributions from N dipoles, all having  < x < N �  ,
add up to the value g. Performing the convolution in
Fourier space we find that log ~PN� ; k� � N log ~P�kj <
x < N �  �, and for N ! 1 we have

log ~P1� ; k� � log ~P1�k� �  
	
~P1;1

�
k
 

�
� 1



: (18)

As shown by Fig. 3, this expression, which can be eval-
uated numerically, is in excellent agreement with numeri-
cal simulations.

~jP1;1j< 1, and, by (15), the term log ~P1�k� will domi-
nate Eq. (18) for k >  , in agreement with our expecta-
tion that P1� ; g� should approach P1�g� for  ! 0. To
consider the limit of  !1, we continue the series
expansion of ~P1;1 to find log ~P�p�

1 � ; k� � �2=5 �1k2 �
4i=105 �2k3 �  O��k= �4�. Since the leading term of
143903-3
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this expansion will dominate for  � 1, we conclude that
P1� ; g� asymptotically approaches a Gaussian distribu-
tion with variance var�g� � 4=5 �1.

In summary, we have identified a shifted Lorentzian
distribution as the probability distribution for the total
field inside a random spherical distribution of dipoles,
and we have identified a family of distributions for the
case where dipoles are not permitted inside an excluded
volume around the origin. These distributions have van-
ishing mean, and they converge to Gaussian distributions
in the limit of large excluded volumes and towards the
Lorentzian in the case of small excluded volumes. It is not
an inconsistency of our results that the shifted Lorentzian
is approached by distributions with vanishing mean: a
Lorentzian can be ascribed any mean value depending on
how the upper and lower limits are taken in the integral
over the distribution. There is in fact reason to emphasize
that the common procedure of fitting a spectrum to a
Lorentzian may be quite misleading if one tries to inter-
pret a frequency shift as the mean value of a possible
perturbation of the energy of the system.

We note for completeness that our analysis accounts for
the field at the center of a spherical distribution of dipoles.
As illustrated by our treatment of excluded volumes, the
contribution from remote dipoles is normal and hence
amenable to a standard continuum description. In an
arbitrary geometry, the field can hence be decomposed
into a definite contribution from the dipole density out-
side and the stochastic contribution (16) from dipoles
inside a spherical neighborhood of the probe.

Heteronuclear molecules with permanent electric di-
pole moments have been trapped [5,6] and experiments
are planned with atomic species with particularly high
magnetic dipole moments [7–9] to study polar degenerate
gases and new kinds of order and collective dynamics
[10–13]. Mean-field approaches in dipolar degenerate
quantum gases may of course be questionable if the
mean field itself is not well defined. Our work suggests
that a critical examination of this issue is necessary.

Highly excited Rydberg atoms in electric and magnetic
fields interact strongly [14], and fast quantum computing
[15] and single photon generating devices [16] have been
suggested based on the energy shifts in atoms caused by
the excitation of nearby atoms. Rare-earth ions in crys-
tals have excited states with permanent electric dipole
moments, and proposals exist for quantum computing
within such a system which are also based on large [17]
or small [18] shifts in absorption frequency of target ions
caused by excitation of a nearby control ion. In the rare-
earth system, Lorentzian broadening of spectrally hole
burnt structures has been observed when ions at different
frequencies are excited [19], and we imagine that this can
be an ideal system to study the broadening and the shift
systematically, as the density of perturbing dipoles can be
varied by the exciting laser system.
143903-4
Extension of the analysis, e.g., to time-dependent fields
and to higher order multipole fields seems very interest-
ing. Von Neuman and Chandrasekhar considered the fluc-
tuating gravitational forces in a stellar medium, see [20].
As a curiosity, we note that the time derivative of these
forces at any given time behaves like a sum of dipole
fields, and hence a massive object moving through a static
random mass distribution may experience a force with a
time derivative given by the shifted Lorentzian.
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M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).

[16] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan,
D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87,
037901 (2001).

[17] N. Ohlsson, R. K. Mohan, and S. Kröll, Opt. Commun.
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